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Overview of entanglement measures

Consider a bipartite system A ∪B in a pure state specified by the density
matrix ρ.

Entanglement entropy (EE): von Neumann entropy of the reduced density
matrix ρA = TrB(ρ),

S(A) = −Tr ρA ln ρA.

EE is a good entanglement measure only for pure quantum states.

Now, consider a bipartite mixed state ρA, where A = A1 ∪A2.

EE fails to characterize the entanglement between A1 and A2 as it mixes the
classical and quantum correlations [Calabrese and Cardy 09’].

Entanglement negativity (EN): The logarithmic entanglement negativity
characterizes the entanglement in the mixed state ρA [Vidal and Werner 02’],

E ≡ lnTr |ρT2
A |. (1)

⋄ Here the partial transpose of ρA with respect to A2 is given by,

⟨e(1)i e
(2)
j | ρT2

A |e(1)m e(2)n ⟩ = ⟨e(1)i e(2)n | ρA |e(1)m e
(2)
j ⟩ .
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Part I: Field theoretic calculations of the

Entanglement Negativity
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Entanglement Negativity in CFT1+1: Replica technique

The EN is difficult to compute for systems with infinite degrees of freedom
such as conformal field theories.

Using the path integral formulation of density matrices, a replica technique was
developed to calculate the entanglement measures such as EE and EN
[Calabrese and Cardy 09’, Calabrese et al. 12’].

Methodology

Consider the ground state of a CFT with a central charge c, defined on a
two-dimensional complex plane N with coordinates (x, τ).

We wish to compute the EN for the mixed state ρA such that A1 = [u1, v1],
A2 = [u2, v2] are two disjoint spatial intervals and B = Ac, as depicted in the
figure below,

Figure: Two disjoint spatial intervals A1, A2 (figure taken from [Calabrese et al. 12’]).
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Take n identical copies of the system and Tr(ρT2
A )n is given by,

Tr(ρT2
A )n =

Z[Nn]

(Z[N ])n
, (2)

where Z[Nn] and Z[N ] are the partition functions on the replica manifold and
the original manifold respectively.

Finally, the partition function in eq. (2) may be recasted into the correlation
function of primary operators on a complex plane such that [Calabrese et al.
12’],

Tr(ρT2
A )n = ⟨Tn(u1)T̄n(v1)T̄n(u2)Tn(v2)⟩C . (3)

⋄ Here Tn and T̄n are the twist and anti-twist operators placed on the end points
of the intervals A1 and A2 with their conformal dimensions given by [Calabrese
and Cardy 04’, Calabrese and Cardy 09’],

hTn = hT̄n
=

c

12

(
n− 1

n

)
. (4)
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The EN may be determined as,

E = lim
n→1

lnTr(ρT2
A )n, ∀n ∈ 2Z. (5)

Figure: Path integral representation of Tr(ρ
T2
A

)n for n = 3. [Calabrese et al. 12’]
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TT-Deformed CFT2s

Describes an irrelevant deformation of a 2D CFT
by a double trace operator comprised of stress
energy tensors.

The action of a TT-Deformed CFT2 is described
by a flow equation with a deformation parameter µ
[Zamolodchikov 04’]:

∂S
(µ)
QFT

∂µ
=

∫
d2w (TwwTw̄w̄−T 2

ww̄)µ , S
(µ)
QFT

∣∣∣
µ=0

= SCFT.

Figure: RG flow of

a CFT from a fixed

point because of

the TT operator.

Perturbatively, for a small deformation parameter µ

S
(µ)
QFT = SCFT + µ

∫
d2w (TwwTw̄w̄ − T 2

ww̄)µ=0 .
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Entanglement Negativity in TT-Deformed CFT2s
Consider a TT-deformed CFT2 in an excited state at a finite temperature 1/β
living on a cylindrical manifold M.

We setup the coordinates on M as w = x+ iτ and w̄ = x− iτ , where
x ∈ (−∞,∞) and τ ∈ [0, β] with τ ∼ τ + β.

Applying the replica technique, the partition function of the deformed theory
(on the Riemann surface Mn) in the path integral representation:

Z[Mn] =

∫
Mn

Dϕ e−S
(µ)
QFT[ϕ]. (6)

Using eq. (2) and the action of TT-deformed CFT, we obtained the EN
between two spatial intervals A and B as,

E(µ)(A : B) = ECFT(A : B) + lim
n→1

log

[
(1− µ

∫
Mn

〈
T T̄
〉
Mn

)(
1− µ

∫
M

〈
T T̄
〉
M

)n
]
. (7)

Upto the first order of the deformation parameter µ [Lavish et al. 23’],

E(µ)(A : B) = ECFT(A : B)− µ lim
n→1

[∫
Mn

〈
T T̄
〉
Mn

− n

∫
M

〈
T T̄
〉
M

]
. (8)
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Application to various configurations

To calculate the EN for two disjoint spatial intervals A = [x1, x2] and

B = [x3, x4] in a thermal TT-deformed CFT2, essentially we need to solve for〈
T T̄
〉
Mn

.

∫
Mn

〈
TT̄
〉
Mn

=

∫
M

1

n

〈
T (n)(w)T̄ (n)(w̄)Tn(w1, w̄1)T̄n(w2, w̄2)T̄n(w3, w̄3)Tn(w4, w̄4)

〉
M〈

Tn(w1, w̄1)T̄n(w2, w̄2)T̄n(w3, w̄3)Tn(w4, w̄4)
〉
M

.

Figure: A schematic of the Riemann surface (n = 3) for two disjoint intervals in a TT-deformed CFT2.
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Next we utilize the Ward identities for the stress energy tensor and the large
central charge analysis of four point functions to obtain the first order
correction in the EN:

δE(A : B) = −
µc2π4

12β3

[
x31 coth

πx31

β
+ x42 coth

πx42

β
− x41 coth

πx41

β
− x32 coth

πx32

β

]
+ δEcross .

Utilizing our general formula for the EN, we also determine the EN for the
case of two adjacent intervals and a single interval.

For two adjacent intervals A = [x1, x2] and B = [x2, x3] ,

δE(A : B) = −
µc2π4

12β3

[
x21 coth

πx21

β
+ x32 coth

πx32

β
− x31 coth

πx31

β

]
+ δEcross .

For a single interval of length ℓ,

δE(A : A
c
) = −

µπ4c2ℓ

6β3

−1 + coth
πℓ

β
− e

− 2πℓ
β

f ′
(
e
− 2πℓ

β

)

f

(
e
− 2πℓ

β

)
 + δEcross ,

here f is a function of the cross ratios.

Notice that the usual UV divergence of the EN is still encoded in the CFT
result, the first order correction in the EN due to TT deformation is finite.
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Part II: Holographic calculations of the

Entanglement Negativity
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Holographic Duality

The holographic duality or AdS/CFT
correspondence conjectures that a theory of
gravity in a d+ 1 - dimensional Anti de-Sitter
spacetime is completely equivalent to a d -
dimensional quantum (conformal) field theory
living on the boundary of the AdS spacetime.

A natural implication of the holographic
duality is that the observables on one side have
a one to one correspondence with the
quantities on the other side.

Figure: Holographic spacetime.
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Holographic Entanglement Entropy: A brief overview

The Ryu-Takayanagi proposal states that the entanglement entropy of a subregion A
in the boundary CFT is given by the area of a static bulk minimal codimension-2
surface Ã homologous to A as [Ryu and Takayanagi 06’],

SA =
1

4GN
Area(Ã).

Figure: Holographic prescription for the entanglement entropy (figure taken from [Faulkner et al.

13’]).
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Cut-off AdS3/TT- deformed CFT2 Proposal and the
Holographic Entanglement Entropy

According to the holographic proposal [Verlinde et al. 18’], a TT-Deformed
CFT2 (with µ > 0) is dual to an AdS3 geometry with a finite radial cutoff

rC =
√

6R4

πcµ
.

The thermal CFT2 with TT-deformation is dual to a BTZ black hole (of
horizon radius rH) in the finite radius bulk geometry, with the metric

ds2 =
r2 − r2H

R2
dt2 +

R2

r2 − r2H
dr2 + r2dx̃2 . (9)

The dual TT-deformed CFT2 is located at the cut-off radius rC and hence the
metric of the background manifold is conformal to the flat metric as follows

ds2 = dt2 +
dx̃2

1− r2
H

r2
C

≡ dt2 + dx2 , (10)

where x = x̃
(
1− r2H

r2
C

)−1/2

is the spatial coordinate in the CFT2.
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The authors in [Chen et al. 18’, Jeong et al. 19’] showed that the Ryu
-Takayanagi formula still holds in the dual finite radius geometry for the
holographic EE of bipartite pure states in a TT-deformed CFT2 at high
temperatures.

The length of the minimal spacelike surface (geodesic) homologous to a
subsystem A = [xi, xj ] in the deformed CFT2 at a temperature 1/β was
computed to be [Chen et al. 18’, Jeong et al. 19’],

Lij = R log
(
A(xi, xj) +

√
A(xi, xj)2 − 1

)
, (11)

where

A(xi, xj) ≡ 1 +
2 r2C
r2H

sinh2

(
π|xi − xj |

β

√
1− r2H

r2C

)
. (12)

The holographic EE for various bipartite states may be calculated using the
above expression for geodesic lengths.
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Holographic Entanglement Negativity in TT-Deformed
CFT2s

The holographic construction for the EN of two disjoint intervals A and B in a
CFT2 concerns an algebraic sum of the lengths of bulk minimal spacelike
geodesics homologous to various combination of subsystems [Malvimat et al.
18’, D. Basu et al. 20’],

E(A : B) =
3

16GN
(LA∪C + LB∪C − LC − LA∪B∪C) , (13)

where C is another interval sandwiched between A and B.

Black Hole Interior

Horizon

Figure: Ryu-Takayanagi surfaces for two disjoint intervals in a finite radius bulk geometry.
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Utilizing the above construction for the holographic entanglement negativity,
we obtain the EN for two disjoint intervals A and B as [Lavish et al. 23’],

E(µ)
(A : B) =

3R

16GN

log


(
A(x1, x3) +

√
A(x1, x3)2 − 1

) (
A(x2, x4) +

√
A(x2, x4)2 − 1

)
(
A(x2, x3) +

√
A(x2, x3)2 − 1

) (
A(x1, x4) +

√
A(x1, x4)2 − 1

)
 .

(14)

Upon solving, it precisely matches with the field theoretical result.

In a similar manner, we computed the holographic entanglement negativity for
the configuration of a single interval and two adjacent intervals and found an
agreement from the field theory side [Lavish et al. 23’].
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Conclusions and Future Directions

We constructed a general formula for the EN of arbitrary bipartite mixed
states in TT-deformed CFT2, up to first order of the deformation parameter µ.

Our EN results perfectly matches with certain combinations of geodesic
lengths in finite radius AdS3 BTZ black hole background verifying the Cut-off
AdS3/TT-deformed CFT2 proposal of [Verlinde et al. 18’].

Future directions:

▶ It will be interesting to apply our work in studying near critical phenomena
relevant to phase transitions in corresponding condensed matter systems.

▶ Other integrable deformations of CFTs may be explored, possibly leading to the

construction of insightful dual gravitational theories and hence, finding more

examples of the holographic principle.
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Thank You!
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Backup

For a general density operator (ρ) in a basis of quantum states {|a⟩},
ρ =

∑
a pa |a⟩ ⟨a| , where pa is the probability corresponding to the state |a⟩.

If ρ2 = ρ, Tr(ρ2) = 1 =⇒ system is in a pure state.
If ρ2 ̸= ρ, Tr(ρ2) < 1 =⇒ system is in a mixed state.

The positive partial transpose criteria for the separability of mixed states: if a
bipartite mixed state is separable, then the partial transpose of its density
matrix (ρPT ) is non-negative.

Path integral representation of density matrices:

Figure 1: First, representation of a density matrix ρ. Second, the partition function Z = Tr(ρ).

Finally, the reduced density matrix ρA where A = [u1, v1] ∪ [u1, v1] ∪ . . . (figure taken from

[Calabrese and Cardy 09’]).
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