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An n-component link £" is a disjoint union £" = :7:1 IC; of knots /C,, each of which we

‘thicken’ ! to form a tubular structure diffeomorphic to a solid torus. The manifold
M = S\L"T thus constructed has a boundary oM = 3£ = U7 3K,
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where RJ._ is the j.-th integrable representation of gauge group G corresponding to the
value of k. [Witten '89]
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is @ Wilson loop, the trace over understood to be in the j-th representation and the
line integral over KC. to be path-ordered. The link complement states are then given by
the coloured Jones polynomials for G = SU(2)
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Entropy measures

We consider some abstract Hilbert space i that decomposes: 7 = H , @ H .
Next, we pick a pure quantum state |) in / to define the reduced density matrix of

A by tracing over the complement B: p,, = Tr,(p). Then the von-Neumann entropy:

S(p,) = -Tr(p,Inp,) = Z)\ InA, (4)

where A are the eigenvalues of p,. For the quantities computed here, we need two
pure states |@) and |y) in our 7 satisfying (¢|y) # O.



Then, we define a transition matrix
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and analogous reduced transition matrix for A: TZ\)W = TrB(T‘PW’).
* Pseudo Entanglement Entropy S,: complex valued measure obtained by

considering the eigenvalues of rflw in (4). [arXiv:2107.01797]

- SVD Entanglement Entropy S ,: real valued measure obtained by considering

the singular values of TZ)W in (4). [arXiv:2307.06531]
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Twist knots C, Link of type K _#27
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These link complement states can be written in the form

d
W)= > c,ln)y®ln,) (6)
n=0

Torus link T(P, Q)
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The Pseudo and SVD entanglement entropies for the above infinite families of links
have the general closed form expressions:

d-1 @1|2 @1|2

S = -y —Z—log|—2—]|. (7)
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Sep = -y ——log|—=——|, (8)
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Dual Chiral

Zl(qjllal Zi a,‘l"p”,‘) Zi 6,"1”,)

A knot /C is chiral if it not is isotopic to its mirror image K*; amphichiral otherwise.

R

Whitehead link(s) Borromean link
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L) — |£*) = C- (9) — C- () = C% (g7") = C£ (q) = CE (q 9
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Future directions

Other invariants, such as Unit Invariant Singular Value Decomposition. Pseudo- and
SVD entanglement entropies are invariant under similarity and unitary
transformations respectively. UISVD is invariant under diagonal transformations.

Physically interesting quantity?






