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Introduction

Scattering amplitudes in Quantum Field Theories

Recent approaches: geometrization of scattering amplitudes:

Amplitude = Volume of a polytope [Hodges]

= Logarithmic differential form on some “positive” space [Arkani-Hamed, et.al]
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Introduction

Playground: Maximally supersymmetric Yang-Mills theory (N = 4 super Yang-Mills (SYM))

→ interacting 4d QFT with highest degree of symmetry

→ supersymmetric cousin of Quantum Chromodynamics (QCD)

→ simplicity: “Hydrogen atom of the 21st century”

Geometrization of amplitudes in planar N = 4 SYM:

Amplituhedron: A(m)

n,k′ [Arkani-Hamed, Trnka]

Momentum Amplituhedron: M(4)
n,k [Damgaard, Ferro, TL, Parisi], [Ferro, TL]

– number of particles: n

– space-time dimension: m – in physics m = 4

– type of scattered particles: k′ – (+ + + . . .+︸ ︷︷ ︸
k′

− . . .−︸ ︷︷ ︸
n−k′−4

−−)

Generalizations of this idea to other models: positive geometries [Arkani-Hamed,Bai,Lam]
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Standard approach to perturbative scattering amplitudes

Write down a Lagrangian consistent with the particle content and all symmetries

Derive Feynman rules for on-shell processes (LSZ reduction)

Evaluate Feynman diagrams contributing to n-particle scattering at a given loop order

An = A(0)
n + λA(1)

n + λ2 A(2)
n + . . .

The final answer is usually much simpler than the intermediate steps because of:

gauge redundancies
off-shell processes

Can we find a way to arrive to the final answer in a simpler, more direct way?

Yes, use properties of amplitudes
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Amplitudes: basic properties

Locality and unitarity: scattering amplitudes factorize in smaller pieces on physical poles

Tree level:

Forward-limits:

The singularities of full amplitude are
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Amplitude: BCFW recursion relations

Solution for the all-loop planar N = 4 SYM

Any tree-level amplitude/loop integrand in terms of on-shell diagrams

All propagators are on-shell – no off-shell integrations.

On-shell diagrams composed of two types of three-point amplitudes
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Scattering amplitudes as differential forms

Price to pay: recursion relations introduce unphysical poles in each term of the answer

(spurious singularities). They cancel out in the final answer.

How to encode the structure of singularities of amplitudes in an efficient way?

Tree amplitudes/loop integrands are rational functions of kinematic data

Enhance them to differential forms

The boundary operator ∂ corresponds to the operation of taking residues:

Res
z→0

dz
z

∧ ω = ω

We can continue this process to get further factorizations

Appropriate region in the kinematic space and its logarithmic form

→ tree-level scattering amplitudes and integrands for loop amplitudes in N = 4 SYM
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Positive geometries and logarithmic differential forms

C≥0=∂X≥0

z

X≥0

Positive geometries: a positive space X≥0 with a meromorphic form Ω(X≥0)

For D = 0: X≥0 is a single point and Ω(X≥0) = ±1.

For D > 0: we must have

Every boundary component C≥0 of X≥0 is a positive geometry of dimension D − 1

The differential form on boundaries is given by residue

Res
z→0

Ω(X≥0) = Resz=0

(
dz
z

∧ Ω(C≥0)

)
= Ω(C≥0)
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Examples of positive geometries

Line segment: [a, b] ⊂ R

Ω([a, b]) = d log
z − a
z − b

=
dz

z − a
− dz

z − b
ba

A quadrilateral: Q ⊂ R2:

Ω(Q) = [123] + [134]

x1 x2

x3

x4

where

[ijk] = d log
⟨ij⟩
⟨ik⟩ ∧ d log

⟨jk⟩
⟨ik⟩

and

⟨ij⟩ = x1
i x2

j − x2
i x1

j

All convex polytopes are positive geometries

Positive geometries generalise convex polytopes to curvy geometric regions
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Planar sector of N = 4 SYM

Amplitudes Twistor theory

p1

p2

Z1

Z2
Z3

Z4Z5

Zn-1

Zn

On-shell superspace Momentum-twistor superspace�� ��WA
i = (λα

i , λ̃
α̇
i , η

α
i , η̃

α̇
i )

�� ��ZA
i = (λα

i , µ̃
α̇
i , χ

A
i ) = (zA

i , χ
A
i )

Momentum amplituhedron Wilson loops Amplituhedron

x1

x2

p1

Dual superspace�� ��XA
i = (λα

i , xαα̇
i , θαA

i )

Null-cone geometries
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Dual space

Dual momentum space: split-signature space with (2, 2) signature (+,+,−,−)

4D on-shell momenta pµ
i subject to pµ

i and momentum conservation
∑

i pµ
i = 0

↓
equivalently encoded using dual momentum coordinates xµ defined as

pµ
i = xµi+1 − xµi

Two points xµ and yµ are null-separated if

(x − y)2 := (x1 − y1)2 + (x2 − y2)2 − (x3 − y3)2 − (x4 − y4)2 = 0

The collection of dual momenta xµi defines a null polygon in R2,2:

x1

x2

p1
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Tree-level

In dual momentum space the positive geometry for tree-level amplitudes is a set of null

polygons satisfying particular positivity conditions.

x1

x2

p1

Loops

The positive geometry for integrands of loop amplitudes is given by a particular compact

region containing points that are positively separated from all vertices of the null polygon.

Tomasz Łukowski (University of Hertfordshire) 08.06.2024 12 / 30



3D intuition – null-cones

Null-cone:

Nx = {y ∈ R1,2 : (y − x)2 = 0}
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3D intuition – intersection of two nullcones

Intersection of two null-cones for generic positively-separated points:

Nxi ∩Nxj = {y ∈ R1,2 : (y − xi)
2 = (y − xj)

2 = 0}
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3D intuition – intersection of two nullcones

Intersection of two null-cones for null-separated points:

Nxi ∩Nxj = {y ∈ R1,2 : (y − xi)
2 = (y − xj)

2 = 0}
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3D intuition – intersection of three nullcones

Intersection of three null-cones for generic positively-separated points:

Nxi ∩Nxj ∩Nxk = {y ∈ R1,2 : (y − xi)
2 = (y − xj)

2 = (y − xk)
2 = 0} = {p+

ijk, p−
ijk}
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3D intuition – positive geometry for 4 points

Positive geometry for one-loop integrands for 4 points in ABJM theory

{y ∈ R1,2 : (y − xi)
2 > 0, i = 1, 2, 3, 4 + a sign-flip condition}
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3D intuition – positive geometry for 6 points

Positive geometry for one-loop integrands for 6 points in ABJM theory

{y ∈ R1,2 : (y − xi)
2 > 0, i = 1, 2, . . . , 6 + a sign-flip condition}
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Back to N = 4 SYM – one loop

We describe the one-loop geometry using the null structure of R2,2

Define a non-negative and a non-positive part:

N+
x = {y ∈ R2,2 : (y − x)2 ≥ 0}, N−

x = {y ∈ R2,2 : (y − x)2 ≤ 0}

For a fixed null polygon with vertices xi, we define

Kn,k(x) := {y ∈ R2,2 : (y − xi)
2 ≥ 0 for all i = 1, 2, . . . , n} =

n⋂
i=1

N+
xi

The region Kn,k(x) decomposes into a compact and a non-compact regions:

Kn,k(x) = ∆n,k(x) ∪∆n,k(x)

Points in the compact region ∆n,k(x) have correct number of sign flips!
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Example: MHV4

Vertices of ∆4,2: maximal cuts

Edges of ∆4,2: triple cuts

Dim-2 boundaries of ∆4,2: double cuts

Facets of ∆4,2: single cuts = forward limits
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Example: all MHVn

For higher number of particles → not all quadruple cuts are inside the geometry, e.g. for n = 5

V(∆5,2(x)) = {q+
1234, q+

2345, q+
3451, q+

4512, q+
5123}

General MHVn:

One-loop geometries combinatorially identical for all tree-level configuration of points

Vertices of one-loop geometry correspond to all allowed quadruple cuts of amplitudes

V(∆n,2(x)) = {q+
ii+1jj+1}i,j=1,2,...,n
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Beyond MHV

For k > 2 the one-loop geometry does depend on the details of the tree-level configuration

However, there are finitely many combinatorially inequivalent geometries

→ can be systematically classified

The complete one-loop geometry (tree-level + one-loop) can be understood as a fibration:

Each region where the one-loop geometry is constant is called a chamber.

Chambers are the maximal intersections of BCFW tiles.
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From geometry to integrands

For a fixed null polygon with vertices xi, one finds a compact region ∆n,k(x) ∈ R2,2

Vertices of ∆n,k(x):

the vertices xi of the null polygon

a subset of quadruple intersection of nullcones q±ijkl

Every vertex of ∆n,k(x) has exactly four edges incident to it

The one-loop geometry ∆n,k(x) is a curvy version of a simple polytope

For simple polytopes (d-dimensional polytopes with exactly d edges/facets meeting at

each vertex), canonical differential form can be written as the sum over all vertices of

known forms associated to each vertex

Tomasz Łukowski (University of Hertfordshire) 08.06.2024 23 / 30



Canonical differential forms

For curvy version of simple polytopes, a conjecture:

Ω[∆n,k(x)] =
∑

q±ijkl∈∆n,k(x)

ωijkl +
∑

i

ωxi

where ωxi = 0 and

ωijkl = d log(y − xi)
2 ∧ d log(y − xj)

2 ∧ d log(y − xk)
2 ∧ d log(y − xl)

2

Almost correct but has non-zero residues outside the geometry → can be corrected:

Ω[∆n,k(x)] =
∑

q±ijkl∈∆n,k(x)

ω±
ijkl

where

ω±
ijkl =

1
2
(ω□

ijkl ± ωijkl)

ω□
ijkl = d log

(y − xi)
2

(y − q±
ijkl)

2
∧ d log

(y − xj)
2

(y − q±
ijkl)

2
∧ d log

(y − xk)
2

(y − q±
ijkl)

2
∧ d log

(y − xl)
2

(y − q±
ijkl)

2
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Examples: MHV amplitudes

For MHV amplitudes (k = 2), the one-loop geometry ∆n,k(x) is combinatorially identical

for all tree-level configurations – only one chamber

The integrand of MHV amplitudes:

Ωn,2,1 = Ωn,2,0 ∧ Ω[∆n,2]

For example: n = 4

Ω4,2,1 = Ω4,2,0 ∧ ω□
1234

with

ω□
1234 =

d4y x2
13x2

24

(y − x1)2(y − x2)2(y − x3)2(y − x4)2

which is the well-known box integrand.

General MHV:

Ω[∆n,2] =
1
2

∑
i<j

ω□
ii+1jj+1 +

1
2

∑
1<i<j

ωD1ii+1jj+1
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General one-loop answer

1 Classify all chambers Cn,k

2 For a chamber c, take a point xc (null polygon) inside and find all vertices in ∆n,k(xc)

3 The tree-level + one-loop canonical form is

Ωn,k,1 =
∑

c∈Cn,k

Ω(0)
c ∧ Ω[∆n,k(xc)]

4 Can be rewritten in a simpler way

Ωn,k,1 =
∑

σ∈Sn,k

Ω(0)
σ ∧ Ω(1)

σ =
∑

σ∈Sn,k

Ω(0)
σ ∧

∑
q±ijkl

ω±
ijkl

All integrands for one-loop amplitudes in planar N = 4 SYM!

This formula is combinatorial – no need to know details of the geometry
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Beyond one loop

For more loops, the ℓ-loop geometry is a collection of points

(y1, y2, . . . , yℓ)

each of them inside the one loop geometry, that are positively separated from each other

(yi − yj)
2 > 0

One needs to find a proper fibration of the complete ℓ-loop geometry and find a similar

combinatorial description of contributions (work in progress)
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Summary

We have translated the momentum amplituhedron, that is the positive geometry for planar

N = 4 SYM in spinor helicity space, into the dual momentum space

Loop geometry depends on the tree configuration

Within a chamber, the one-loop geometry is combinatorially constant

One-loop integrand can be found from the canonical differential form of this space

One-loop geoometry for each null polygon is a curvy version of a simple polytope

Main result

We found a new formula for one-loop integrands for planar N = 4 SYM scattering amplitudes
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Outlook

For phenomenological applications: find a way to integrate this integrands in a way

compatible with geometry to extract observables

For theoretical physicists: find all integrands at higher loops, for any multiplicity and

helicity sector

For mathematicians: many interesting combinatorial questions, eg. boundary

stratification of the loop spaces, generalisations of positive Grassmannians, etc.
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Thank you for your attention!
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